Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Harmful Algae ; 122: 102369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36754458

RESUMO

The holopelagic brown macroalgae Sargassum natans and Sargassum fluitans form essential habitats for attached and mobile fauna which contributes to a unique biodiversity in the Atlantic Ocean. However, holopelagic Sargassum natans (genotype I & VIII) and Sargassum fluitans (genotype III) have begun forming large accumulations with subsequent strandings on the western coast of Africa, the Caribbean and northern Brazil, threatening local biodiversity of coastal ecosystems and triggering economic losses. Moreover, stranded masses of holopelagic Sargassum may introduce or facilitate growth of bacteria that are not normally abundant in coastal regions where Sargassum is washing ashore. Hitherto, it is not clear how the holopelagic Sargassum microbiome varies across its growing biogeographic range and what factors drive the microbial composition. We determined the microbiome associated with holopelagic Sargassum from the Great Atlantic Sargassum Belt to coastal stranding sites in Mexico and Florida. We characterized the Sargassum microbiome via amplicon sequencing of the 16S V4 region hypervariable region of the rRNA gene. The microbial community of holopelagic Sargassum was mainly composed of photo(hetero)trophs, organic matter degraders and potentially pathogenic bacteria from the Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae. Sargassum genotypes S. natans I, S. natans VIII and S. fluitans III contained similar microbial families, but relative abundances and diversity varied. LEfSE analyses further indicated biomarker genera that were indicative of Sargassum S. natans I/VIII and S. fluitans III. The holopelagic Sargassum microbiome showed biogeographic patterning with high relative abundances of Vibrio spp., but additional work is required to determine whether that represents health risks in coastal environments. Our study informs coastal management policy, where the adverse sanitary effects of stranded Sargassum might impact the health of coastal ecosystems.


Assuntos
Microbiota , Sargassum , Região do Caribe , Biodiversidade , Bactérias
2.
Chemosphere ; 288(Pt 1): 132423, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600015

RESUMO

Intoxications of captive bottlenose dolphins (Tursiops truncatus) in the Florida Keys have been linked to observed interactions with marine macrophytic algal and cyanobacterial communities within enclosures. Taxonomic characterization of these communities coupled, in turn, to available observational data collected during intoxication events point to a contribution of filamentous cyanobacterial assemblages comprised of members of the polyphyletic genus, Lyngbya sensu lato. To identify toxic metabolites possibly relevant to these intoxications, chemical screening for known neurotoxins from cyanobacteria, as well as other regionally relevant harmful algal bloom (HAB) taxa, was combined with toxicity testing, and subsequent bioassay-guided fractionation, employing early life stages (i.e., embryos and larvae) of zebrafish (Danio rerio) as a well-established aquatic vertebrate toxicological model. Chemical analyses did not detect (within analytical limits) any of the known algal or cyanobacterial neurotoxins. Toxicity testing, alongside bioassay-guided fractionation, however, identified several chemical fractions with a range of potentially relevant bioactivities in both zebrafish embryos and post-hatch larvae including, in particular, behavioral (e.g., aberrant swimming) and physiological (e.g., altered heart rate) endpoints indicative of possible neurotoxicity, and subsequent chemical characterization of fractions suggested a contribution of the previously identified bioactive metabolite, eudesmacarbonate, in the observed toxicity. Comparative toxicological assessment with PbTx-2, as a positive control for neurotoxicity in the zebrafish model, further supported neurotoxic activity of cyanobacterial metabolites potentially relevant, in turn, to a contribution of these metabolites to dolphin intoxications. These findings suggest, in general, that marine zoological facilities may be affected by regional HABs, and assessments of potentially toxigenic algae and cyanobacteria should be included in management strategies in these facilities.


Assuntos
Golfinho Nariz-de-Garrafa , Cianobactérias , Animais , Toxinas de Cianobactérias , Florida , Peixe-Zebra
3.
Mar Pollut Bull ; 167: 112326, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940432

RESUMO

Apart from direct light effects, we tested whether the takeover of the seagrass Thalassia testudinum by the seaweed Anadyomene sp. in high nutrient areas of Biscayne Bay, Florida, USA, is related to a faster nutrient surge uptake capacity of the seaweed and/or a negative effect on the seagrass uptake rates. Anadyomene sp. and T. testudinum showed a similar ammonium surge uptake capacity, but the seagrass performed better than the seaweed in mixed incubations at high ammonium concentrations. T. testudinum was faster than Anadyomene sp. at taking up pulses of phosphate, but the uptake rates of the seagrass were significantly decreased in the presence of the seaweed. The takeover of T. testudinum by Anadyomene sp. at Biscayne Bay is likely dominated by light and cannot be simply explained by their single or mixed nutrient surge uptake rates, but the phosphate availability and the seagrass uptake inhibition by the seaweed may also play a key role in the process.


Assuntos
Hydrocharitaceae , Baías , Florida , Nitrogênio , Fósforo
4.
PeerJ ; 8: e8667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149030

RESUMO

The massive influx of pelagic Sargassum spp. (sargasso) into the Mexican Caribbean Sea has caused major deterioration of the coastal environment and has affected the tourism industry as well as livelihoods since 2015. Species of Sargassum have high capacity to absorb metals; thus, leachates of sargasso may contribute to contamination by potentially toxic metals when they drain into the sea and into the groundwater when dumped in inadequate land deposits. Valorization of sargasso would contribute to sustainable management; therefore, knowledge on potentially toxic metal content is necessary to define possible uses of the algae. We present concentrations of 28 elements measured using a non-destructive X-ray fluorescence analyzer (XRF) in 63 samples of sargasso collected between August 2018 and June 2019 from eight localities along ∼370 km long coastline of the Mexican Caribbean Sea. The sargasso tissues contained detectable concentrations of Al, As, Ca, Cl, Cu, Fe, K, Mg, Mn, Mo, P, Pb, Rb, S, Si, Sr, Th, U, V, and Zn. The element concentration in sargasso varied on spatial and temporal scales, which likely depended on the previous trajectory of the pelagic masses, and whether these had (or had not) passed through contaminated areas. Total arsenic concentration varied between 24-172 ppm DW, exceeding the maximum limit for seaweed intended as animal fooder (40 ppm DW) in 86% of the samples. For valorization, we recommend analyses of metal contents as a mandatory practice or avoiding uses for nutritional purposes. The high arsenic content is also of concern for environmental contamination of the sea and aquifer.

5.
Mar Pollut Bull ; 150: 110742, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31787339

RESUMO

Macroalgal blooms are becoming an increasing problem in coastal regions worldwide and have been associated with a widespread decline of seagrass habitats. It is critical to measure macroalgal bloom (MB) impacts at broad spatial scales since seagrass seascape characteristics can influence feedback processes that regulate the resilience of seagrass ecosystems. We assessed the broad-scale spatial impacts of an MB formed by Anadyomene spp. on the seagrass seascapes in Biscayne Bay (Miami, US) using a multi-scale seascape approach. By integrating field and remote sensing data, our multi-scale approach showed significant reductions in seagrass foliage cover and a seascape structure transformation across the bloom extent. The landscape cover and patch extensiveness declined after the MB peak. Other spatial pattern metrics also showed that the seagrass seascape structure got fragmented. We demonstrated that a persistent MB could transform the structure of seagrass seascapes, hindering the resilience of seagrass habitats.


Assuntos
Clorófitas/crescimento & desenvolvimento , Ecossistema , Alga Marinha , Baías , Eutrofização , Florida
6.
J Phycol ; 53(5): 1087-1096, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28733994

RESUMO

As marine tropical ecosystems deteriorate and lose biodiversity, their communities are shifting to being dominated by a few species, altering ecosystem's functioning and services. Macroalgae are becoming dominant on coral reefs, and are frequently observed outcompeting corals. Turf algal assemblages are the base of energy flow in these systems and one of the most abundant types of macroalgae on coral reefs, but little is known about their biology and diversity. Through molecular and morphological analyses, we identified the turf-forming species Laurencia cervicornis, and by studying seasonal recruitment and the impact of herbivorous fishes on its abundance, we describe its survival strategy. The molecular analyses used a total of 45 rbcL gene sequences including eight current genera within the Laurencia complex and two new sequences of L. cervicornis and strongly support the new combination of Palisada cervicornis comb. nov. In addition, a detailed morphological characterization including the description of reproductive structures is provided. Palisada cervicornis was seen recruiting in all seasons but was typically in low abundance. Specimens grown on tiles in fish exclosure cages were devoured in less than 4 h when offered to fishes. Even though many species of the Laurencia complex have chemicals that deter herbivory, species within the genus Palisada lack feeding deterrents and thus are highly palatable. We suggest that P. cervicornis is a palatable species that seems to survive in the community by obtaining a size-refuge from herbivory within turf communities.


Assuntos
Recifes de Corais , Traços de História de Vida , Rodófitas/fisiologia , Alga Marinha/fisiologia , Proteínas de Algas/genética , Florida , Filogenia , Dinâmica Populacional , Rodófitas/classificação , Rodófitas/genética , Ribulose-Bifosfato Carboxilase/genética , Estações do Ano , Alga Marinha/classificação , Alga Marinha/genética , Análise de Sequência de DNA
7.
Mar Pollut Bull ; 122(1-2): 272-281, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28651862

RESUMO

From mid-2014 until the end of 2015, the Mexican Caribbean coast experienced a massive influx of drifting Sargassum spp. that accumulated on the shores, resulting in build-up of decaying beach-cast material and near-shore murky brown waters (Sargassum-brown-tides, Sbt). The effects of Sbt on four near-shore waters included reduction in light, oxygen (hypoxia or anoxia) and pH. The monthly influx of nitrogen, and phosphorus by drifting Sargassum spp. was estimated at 6150 and 61kgkm-1 respectively, resulting in eutrophication. Near-shore seagrass meadows dominated by Thalassia testudinum were replaced by a community dominated by calcareous rhizophytic algae and drifting algae and/or epiphytes, resulting in 61.6-99.5% loss of below-ground biomass. Near-shore corals suffered total or partial mortality. Recovery of affected seagrass meadows may take years or even decades, or changes could be permanent if massive influxes of Sargassum spp. recur.


Assuntos
Sargassum , Animais , Biomassa , Região do Caribe , Hydrocharitaceae , México , Dinâmica Populacional , Qualidade da Água
8.
PeerJ ; 4: e2643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833810

RESUMO

Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.

9.
Rev. biol. trop ; 62(4): 1535-1548, oct.-dic. 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-753709

RESUMO

Green sea turtles, Chelonia mydas, are grazers influencing the distribution of seagrass within shallow coastal ecosystems, yet the drivers behind C. mydas patch use within seagrass beds are largely unknown. Current theories center on food quality (nutrient content) as the plant responds to grazing disturbances; however, no study has monitored these parameters in a natural setting without grazer manipulation. To determine the morphological and physiological responses potentially influencing seagrass recovery from grazing disturbances, seagrasses were monitored for one year under three different grazing scenarios (turtle grazed, fish grazed and ungrazed) in a tropical ecosystem in Akumal Bay, Quintana Roo, Mexico. Significantly less soluble carbohydrates and increased nitrogen and phosphorus content in Thalassia testudinum were indicative of the stresses placed on seagrasses during herbivory. To determine if these physiological responses were the drivers of the heterogeneous grazing behavior by C. mydas recorded in Akumal Bay, patches were mapped and monitored over a six-month interval. The abandoned patches had the lowest standing crop rather than leaf nutrient or rhizome soluble carbohydrate content. This suggests a modified Giving Up Density (GUD) behavior: the critical threshold where cost of continued grazing does not provide minimum nutrients, therefore, new patches must be utilized, explains resource abandonment and mechanism behind C. mydas grazing. This study is the first to apply GUD theory, often applied in terrestrial literature, to explain marine herbivore grazing behavior.


Las tortugas verdes, Chelonia mydas, son herbívoros que influencian la distribución de pastos marinos en sistemas costeros someros, sin embargo los factores que hay detrás del uso de un parche de pastos marinos por C. mydas son desconocidos. Teorías actuales se centran en calidad de alimento (contenido de nutrientes en tejido) conforme la planta responde a la alteración causada por el pastoreo; sin embargo no hay estudios que hayan monitoreado estos parámetros en un diseño natural sin manipulación del herbívoro. Para deter minar las respuestas morfológicas y fisiológicas (productividad, morfología y almacenamiento de nutrientes) que potencialmente influencian la recuperación de los pastos de la alteración por pastoreo, los pastos fueron monitoreados por un año en tres escenarios diferentes de pastoreo (pastoreo por tortuga, pastoreo por peces, sin pastoreo) en el sistema tropical Bahía de Akumal, Quintana Roo, México. Significativamente menos carbohidratos solubles y mayor contenido de nitrógeno y fósforo fueron indicativos del estrés causado por el pastoreo en los pastos. Para determinar si estas respuestas fisiológicas de los pastos son las causantes del heterogéneo comportamiento de pastoreo de C. midas, reportado en Akumal, se mapearon y monitorearon parches de pastos en intervalos de seis meses. Los parches abandonados tuvieron menor biomasa, en vez de bajo contenido de nutrientes en hoja, o de carbohidratos en raíces. Estos resultados sugieren un comportamiento modificado de renunciamiento por densidad: el umbral crítico donde el costo de pastoreo continuo no provee los nutrimentos mínimos, por lo tanto nuevos parches deberán ser utilizados, explicando así el abandono del recurso y mecanismo detrás del comportamiento de pastoreo por C. mydas. Este es el primer estudio en aplicar la teoría de renuncia por densidad, frecuentemente utilizada en la literatura terrestre, para explicar el comportamiento de pastoreo de herbívoros.


Assuntos
Animais , Alismatales/anatomia & histologia , Alismatales/fisiologia , Comportamento Alimentar/fisiologia , Tartarugas/fisiologia , Alismatales/classificação , Sinais (Psicologia) , México , Estações do Ano , Tartarugas/classificação
10.
Rev Biol Trop ; 62(4): 1535-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25720186

RESUMO

Green sea turtles, Chelonia mydas, are grazers influencing the distribution of seagrass within shallow coastal ecosystems, yet the drivers behind C. mydas patch use within seagrass beds are largely unknown. Current theories center on food quality (nutrient content) as the plant responds to grazing disturbances; however, no study has monitored these parameters in a natural setting without grazer manipulation. To determine the morphological and physiological responses potentially influencing seagrass recovery from grazing disturbances, seagrasses were monitored for one year under three different grazing scenarios (turtle grazed, fish grazed and ungrazed) in a tropical ecosystem in Akumal Bay, Quintana Roo, Mexico. Significantly less soluble carbohydrates and increased nitrogen and phosphorus content in Thalassia testudinum were indicative of the stresses placed on seagrasses during herbivory. To determine if these physiological responses were the drivers of the heterogeneous grazing behavior by C. mydas recorded in Akumal Bay, patches were mapped and monitored over a six-month interval. The abandoned patches had the lowest standing crop rather than leaf nutrient or rhi- zome soluble carbohydrate content. This suggests a modified Giving Up Density (GUD) behavior: the critical threshold where cost of continued grazing does not provide minimum nutrients, therefore, new patches must be utilized, explains resource abandonment and mechanism behind C. mydas grazing. This study is the first to apply GUD theory, often applied in terrestrial literature, to explain marine herbivore grazing behavior.


Assuntos
Alismatales/anatomia & histologia , Alismatales/fisiologia , Comportamento Alimentar/fisiologia , Tartarugas/fisiologia , Alismatales/classificação , Animais , Sinais (Psicologia) , México , Estações do Ano , Tartarugas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...